

1

Phytoremediation driven energy crops production on heavy metal degraded areas as local energy carries

This project has received funding from European Community's 7th Framework Programme (FP7/2007-2013) under Grant agreement 610797.

PHYTO DENERGY

Phyto2Energy project partner Vita 34 AG, Business Unit BioPlanta

- interdisciplinary team consists of scientists, engineers, laboratory assistants and technicians
- more than 20 years experiences in development and use of bio- and phytotechnologies
- developed technologies were awarded with several innovation prizes
- realization of projects worldwide

PHYTO 2ENERG

Member of research and business networks

- National delegate in the EU-COST (European Cooperation in Science ulletand Technology) intergovernmental framework for European Cooperation in Science and Technology
- Vice presidency of the **IPS (International Phytotechnology Society**) ۲ worldwide society of individuals and institutions engaged in the science and application of using plants to deal with environmental problems
- Board member of **Biosaxony (Biotech Network Saxony)** network ۲ consisting of the political sector, the financial economy, technology and industry

<u>Phrtogenergy</u> Company profile

- since 1992 selection and mass propagation of plants for:
- production of active pharmaceutical ingredients
- biological treatment of water, soil and sewage sludge (phytoremediation)
- special know-how in biological treatment of water using Constructed Wetlands
- actual international projects in Poland, Hungary, Mexico, China, Vietnam, Brazil

HYTO 2ENERGY

Phytoremediation of heavy metal contaminated sewage sludge I

- former sewage dewatering plant, north to Leipzig, Germany
- about 56 ha, about 800,000 m³ sewage sludge (1952 1990)
- sewage sludge mainly polluted with metals (Cd, Cr, Cu, Ni, Pb, Zn)

Contaminant	Target value [mg/kg]	Sewage sludge [mg/kg]
lead	150	580
cadmium	5	31
chromium	250	590
nickel	100	47
mercury	2	3
copper	100	1,000
zinc	500	3,200
phenols	1	2

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

PHYTO 2ENERGY

Phytoremediation of heavy metal contaminated sewage sludge II

- biological sludge covering with reed, plant cultivation on coconut fiber mats ullet
- removal of heavy metals by harvesting plants •
- humification of sewage sludge by biological processes •
- cultivation of reed & sun flower in 2007 2008, reed & maize in 2009 2011 •
- within 15 years ✓ 1.1 kg lead •
 - ✓ 0.5 kg cadmium ✓ 0.4 kg chromium ✓ 4.4 kg copper ✓ 0.7 kg nickel ✓ 92.6 kg zinc were removed

<u>Phrogenergy</u> Resulting Phyto2Energy project

- establishment of plot experiments and first sampling in 2014
- 20 experimental plots, 16m² each, 4 m buffer zone
- 4 different plant species: Miscanthus x giganteus, Sida hermaphrodita, Panicum virgatum, Spartina pectinata
- objective: selection of energy crop species suitable for biomass production and phytoremediation purposes of HMC sites

<u>Phytogenergy</u> Design of field trial

- 1. control (no additives),
- 2. NPK standard fertilization,
- 3. Inoculum I addition in 2014,
- 4. Inoculum II addition (new established inoculum) in 2017,
- 5. Innoculum I addition in 2017 (as a control for the same conditions for inoculum I addition)

<u>Phrtogenerg</u> Soil properties (macronutrients)

Values are means ± SD (n=20)

 \bigcirc

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

<u>Phrtogenerg</u> Soil properties (S, N, organic matter)

Values are means ± SD (n=20)

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

Total concentration of heavy metals in soil

Values are means ± SD (n=20)

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

Bioavailable cadmium concentrations in soil

Values are means \pm SD (n=3)

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

Seminar IETU 2016

2016-11-24

Cadmium concentrations in biomass

Values are means ± SD (n=5)

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

Seminar IETU 2016

2016-11-24

Bioavailable zinc concentrations in soil

Values are means ± SD (n=3)

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

Seminar IETU 2016

2016-11-24

Mirrogenergy Zinc concentrations in biomass

Values are means ± SD (n=5)

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

Seminar IETU 2016

2016-11-24

Lead concentrations in biomass

Values are means ± SD (n=5)

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

Seminar IETU 2016

2016-11-24

PHYTO 2 ENERGY

Biomass production after 2nd vegetation season

This project has received funding from the European Union's 7th Programme for research, technological development and demonstration under grant agreement No 610797

2016-11-24

In vitro production of plants PHYTO 2ENERGY

- mass propagation of suitable plants for ulletremediation and energy production by in vitro cultivation
- capacity of Vita 34 about 10.4 Mio plants/year ullet

from *in vitro* to *ex* vitro plant

rootage (by hormones) and acclimatization

planting/

conversion remediation

Seminar IETU 2016 2016-11-24

<u>Phrtogenerg</u> Outlook for further cooperation

• Proposal for new project idea:

"Production of bioactive compounds by medical plants under controlled **phyto**tron conditions and their effect on human stem cells" (Proactivephyto)

Many thanks for your attention!

Kathrin Kopielski Project Manager Vita 34 AG Deutscher Platz 5a D-04103 Leipzig Germany

▲ +49(0)341 487 92-869
▲ +49(0)341 487 92-39

kathrin.kopielski@vita34.de www.vita34.de/bioplanta

