
Economic aspects of a full-scale packed bed CLC reactor, comparison with other zero emission technologies

DEMOCLOCK Business Brunch

Katowice, 13rd December 2016

Luca Mancuso Process Director, Amec Foster Wheeler

Agenda

- 1. Introduction
 - a. Amec Foster Wheeler at a glance
 - b. What is CCS technology?
 - c. Technical and Policy challenges

2. Results of the Techno-economic assessments

- a. Plant summary
- b. Methodological approach
- c. Total Plant Cost
- d. **O&M**
- e. LCOE, CAC
- f. Sensitivity cases

3. Summary Considerations

Agenda

- 1. Introduction
 - a. Amec Foster Wheeler at a glance
 - b. What is CCS technology?
 - c. Technical and Policy challenges
- 2. Results of the Techno-economic assessments
 - a. Plant summary
 - b. Methodological approach
 - c. Total Plant Cost
 - d. **O&M**
 - e. LCOE, CAC
 - f. Sensitivity cases
- 3. Summary Considerations

Who we are Amec Foster Wheeler at a glance

Market mix by revenue

Clean Energy, # Oil & Gas

Business units

Americas, Northern Europe & CIS (NECIS), Asia, Middle East, Africa & Southern Europe (AMEASE), Global Power Group (GPG) 160+ year history

Operating in over 55 countries

Trading symbol

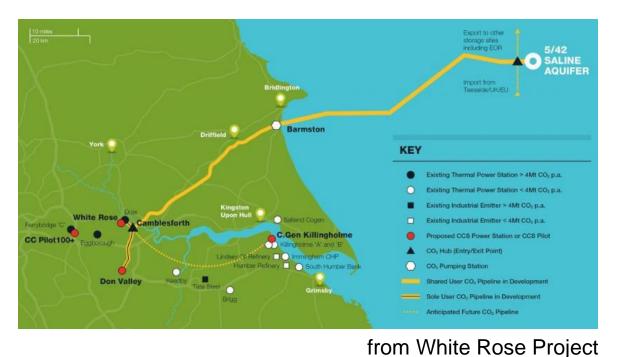
Aim

Prepare the commercialization of the new CLC technology, attracting NEW customers for further developments

Objectives

- Evaluation of the cost of electricity (COE) and of CO₂ avoidance cost (CAC) in IG-CLC-CC integrated plants using packed bed reactors
- Comparison with benchmark technologies with near Zero emissions (Carbon Capture and Storage, CCS)
- Sensitivity economic analyses

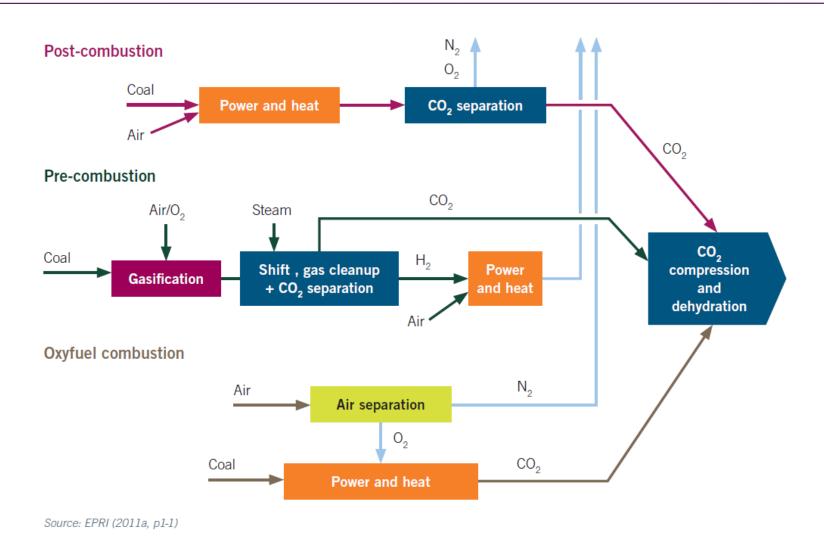
What is CCS Technology?


"Full Chain CCS" is broken down into three steps:

CO₂ Capture (benchmark technologies)

- Post Combustion
- Pre Combustion
- Oxy Combustion
- CO₂ Transportation
 - Pipeline
 - Ship
 - Truck

6


- CO₂ Storage
 - Depleted Reservoirs
 - Saline Aquifer
 - Enhanced Oil Recovery

Storage

Carbon Capture utilisation and storage Benchmark technologies

Technical Challenges

Post-Combustion Capture

- size (volume) of equipment
- prevention of emission of amine derivatives from absorber

Pre-combustion Capture

- plant complexity
- Oxy-combustion Capture
 - less demonstrated at scale
- All Energy penalty (and hence higher running costs) compared to unabated fossil fuel power generation
- Transportation maintaining desired phase
- Storage ensuring full and safe containment

None of these are show-stoppers

Policy Challenges

Public acceptance

- Who pays for the additional cost versus unabated power generation?
- ► How to incentivise investment?
- ▶ Who pays for the CO₂ transportation network & storage sites?
- Who is liable to keep the storage sites running safely in 20, 50, 200 years time?

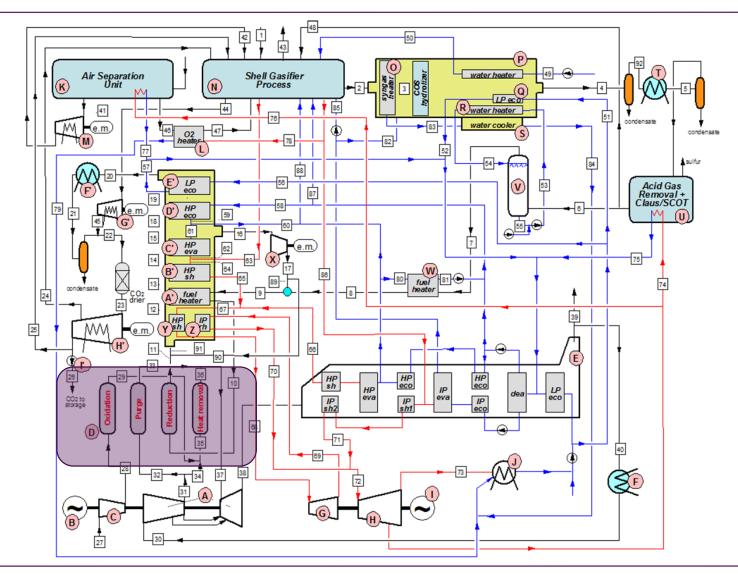
Agenda

- 1. Introduction
 - a. Amec Foster Wheeler at a glance
 - b. What is CCS technology?
 - c. Technical and Policy challenges

2. Results of the Techno-economic assessments

- a. Plant summary
- b. Methodological approach
- c. Total Plant Cost
- d. **O&M**
- e. LCOE, CAC
- f. Sensitivity cases

3. Summary Considerations


Assessed Plant configuration summary

Case	Feedstock	Technology	Main Product	CCS	Combustion Technology
1	Coal	IGCC	Power	No	GT
2	Coal	IGCC	Power	Yes	GT
3	Coal	IGCC	Power	Yes	CLC (PBR)
4 (*)	Coal	SC-PC	Power	No	Air-boiler
5	Coal	SC-PC	Power	Yes	Air-boiler
6	Coal	Oxy-SC-PC	Power	Yes	Oxy-boiler

(*) Reference technology for CO_2 avoidance cost calculation

Plant overview

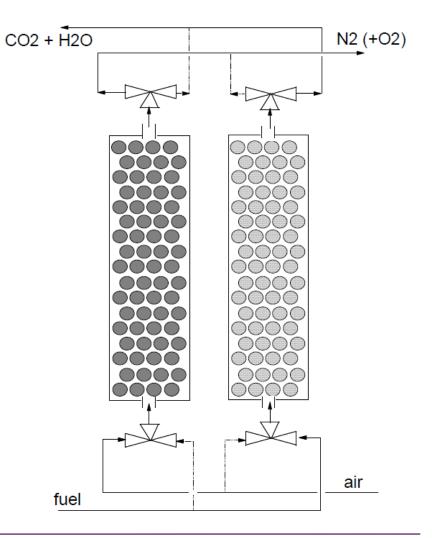
Plant performance

Case 3: IGCC plant with CO2 capture (CCS) and Chemical Looping Combustion (CLC)

Coal input [t/h]	122.9	
Coal thermal input [MW _{LHV}]	853.9	
Gas Turbine Electric Power Output [MW]	175.2	
Steam Turbine Electric Power Output [MW]	240.6	
Auxiliary Power Demand [MW]	67.0	
Net Electric Plant Output [MW]	348.8	35.3% IGCC
Electric Efficiency [% _{LHV}]	40.8	35.2% USCPC
CO ₂ mass flow rate release to ambient [t/h]	11.7	35.7% OxyPC
Specific Emission of CO ₂ [g/kWh]	33.5	
Carbon Capture Ratio [%]	96.1	~ 90% others

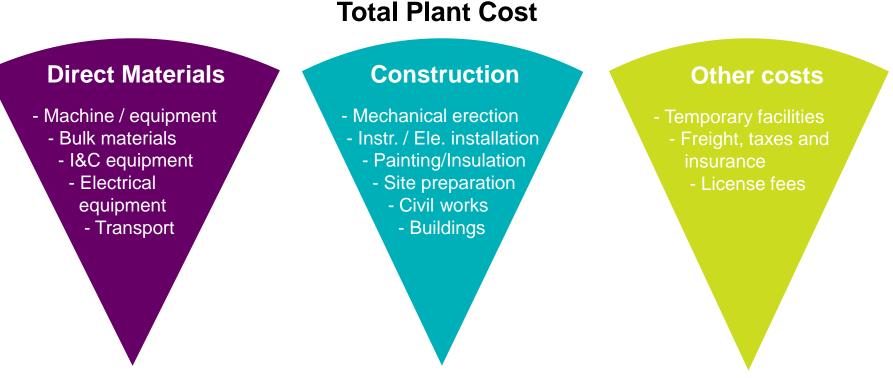
Sequential steps

- 1. Acquisition/finalization of plant performance and H&MBs
- 2. Preparation of sized equipment list
- 3. Estimate Total Plant Cost (TPC) and Total Capital Requirement (TCR)
- 4. Estimate the Operating and Maintenance costs (O&M)
- 5. Estimate the plant revenues
- 6. Calculate the Levelized Cost of Electricity (LCOE)
- 7. Calculate of the CO_2 avoidance cost (CAC)
- 8. Comparison between plants adopting benchmark technologies (SC-PC and IGCC) and CLC plant


 $CO_{2} \text{ Avoidance Cost (CAC)} = \frac{LCOE_{CCS} - LCOE_{Reference}}{CO_{2} \text{ Emissions}_{Reference} - CO_{2} \text{ Emissions}_{CCS}}$

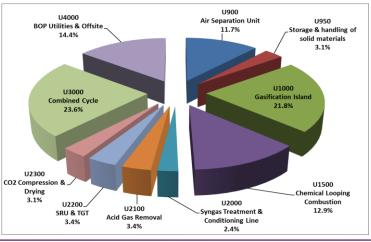
9. Sensitivity analyses (main key factors) in order to estimate the attractiveness of CLC plants

Main input data for CLC Packed Bed Reactor

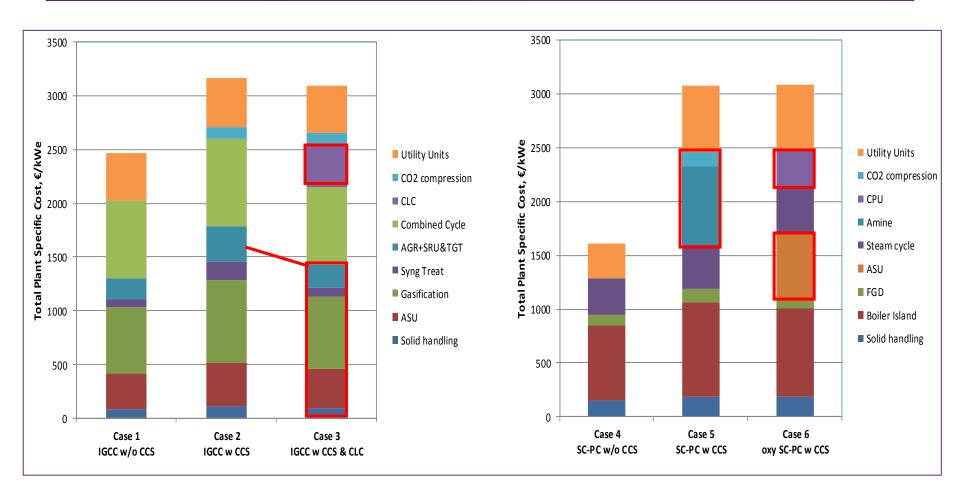

- Performance at lab scale
- Packed Bed Reactors (PBR) in vertical CS pressure vessels coated with refractory surface
- ▶ 14 reactors (I.D. 5.5m, I.L. 11m)
 - 3 oxidation phase
 - 3 reduction phase
 - 7 heat removal phase
 - 1 purge phase
- Bed material lifetime: 5 years
- Industrial specific bed material cost: 2,500 €/t

Total Plant Cost (TPC) Bases and methodology

Defined in general accordance with the White Paper "Toward a common method of cost estimation for CO2 capture and storage at fossil fuel power plants" (March 2013), produced collaboratively by authors from EPRI, IEAGHG, Carnegie Mellon University, MIT, IEA, GCCSI and Vattenfall



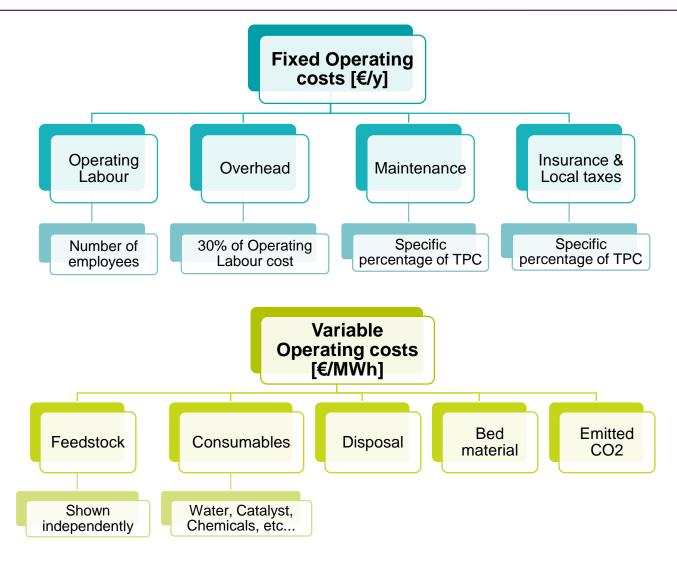
EPC services included in above items / Project Contingency: 10% of the above items.


Total Plant Cost (TPC) Case 3

	Project Democlock Date: May 2015 REV. 0	CASE 3 - ESTIMATE SUMMARY (IGCC w CCS & CLC)							amec foster wheeler 🤸				
POS	DESCRIPTION	Unit 900 €	Unit 950 €	Unit 1000 €	Unit 1500 €	Unit 2000 €	Unit 2100 €	Unit 2200 €	Unit 2300 €	Unit 3000 €	Unit 4000 €	TOTAL €	REMARKS
	DIRECT MATERIALS CONSTRUCTION OTHER COSTS	77,011,000 32,871,000 5,494,000	21,472,000 7,472,000 1,589,000 30,533,000	144,107,000 60,224,000 10,109,000 214,440,000	91,960,000 20,770,000 14,339,000 127,069,000	13,548,000 8,635,000 1,526,000 23,709,000	17,907,000 13,359,000 2,274,000 33.540,000	16,975,000 10,609,000 6,302,000 33,886,000	16,495,000 11,547,000 2,026,000 30,068,000	151,217,000 67,709,000 13,361,000 232,287,000	104,998,000 29,712,000 6,996,000 141,706.000	655,690,000 262,908,000 64,016,000 982,614.000	START-UP COSTS
	PROJECT CONTINGENCY	11,538,000	3,053,000	21,444,000	12,707,000	2,371,000	3,354,000	3,389,000	3,007,000	23,229,000	14,171,000	98,263,000	950 Storage and Handling of solid materials 1000 Gasification Island 1500 Chemical Looping Combustion
	TOTAL PLANT COST	126,914,000	33,586,000	235,884,000	139,776,000	26,080,000	36,894,000	37,275,000	33,075,000	255,516,000	155,877,000	1,080,877,000	349 MWe, Net Power Output 3099 €/kWe, Specific Investment Cost

Specific Total Plant Cost

Total Capital Requirement (TCR) Bases and methodology


<u>Total Capital Requirement (TCR)</u> is the sum of the TPC and the following items:

- Interest during construction, assumed same as discount rate (8%)
- ► Spare parts cost, assumed as 0.5% of the TPC
- ► Working capital, including 30 days inventories of fuel and chemicals
- Start-up costs, consisting of:
 - 2% of TPC to cover modifications to equipment that are needed to bring the unit up to full capacity
 - 25% of fuel cost for one month to cover inefficient operation that occurs during the start-up period
 - 3 months O&M costs to include training
 - 1 month of catalyst, chemicals and maintenance materials costs
- ► Owner's costs, assumed as 7% of TPC

TCR is tipically 30-35% higher than TPC

Operating & Maintenance (O&M) costs

Labour cost

Number of personnel required to operate the plant IGCC: 133 people SC-PC: 105 people

Coal IGCC Plants							
	ASU	Gasification	Power Island & Utilities	TOTAL	Notes		
OPERATION							
Area Responsible	1	1	1	3	dailyposition		
Assistant Area Responsible	1	1	1	3	dailyposition		
Shift Superintendent		5		5	1 position per shift		
Electrical Assistant		5 5 1 pos					
Shift Supervisor	5	5	5	15	3 positions per shift		
Control Room Operator	5	10	10	25	5 positions per shift		
Field Operator	5	30	20	55	10 positions per shift		
Subtotal				111			
MAINTENANCE							
Mechanical group		4	4	daily position			
Instrument group		7	7	daily position			
Electrical group		5		5	dailyposition		
Subtotal				16			
LABORATORY							
Superintendent+Analysts		6		6	dailyposition		
Subtotal				6			
TOTAL				133			

Maintenance cost

Estimated as a percentage of the TPC

Power plants					
Plant Sections	Maintenance cost as percentage of the total installed cost				
Gasification Island	3.0 %				
Feedstock handling and storage, CO ₂ compression, Boiler Island, DeNOx, DeSOx, CPU	2.5 %				
ASU, AGR, SRU&TGT, Syngas Treatment, CLC unit, CO ₂ amine abs.	2.0 %				
Balance of Plant	1.5 %				
Combined Cycle ⁽¹⁾	5.0 %				
Steam Cycle ⁽²⁾	2.0 %				

Note: 1) IGCC-based plants;

2) SC-PC-based plants.

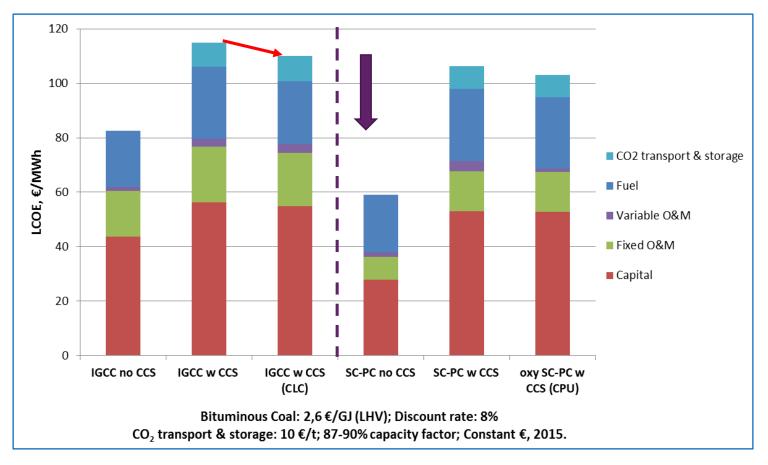
► Statically split as 60% maintenance materials and 40% maintenance labour

Example of O&M costs

amec foster wheeler 🤸	IGCC-BASED CASES O&M COSTS (2015)				
	Case 1	Case 2	Case 3		
	€/year	€/year	€/year		
Fixed Costs					
Direct labour	6,650,000	6,650,000	6,650,000		
Adm./gen overheads	1,995,000	1,995,000	1,995,000		
Insurance & Local taxes	9,066,200	10,047,400	10,808,800		
Maintenance	27,742,700	29,941,100	31,237,300		
Subtotal	45,453,900	48,633,500	50,691,100		
Variable Costs (Availability = 87%)					
Feedstock	59,556,000	65,874,000	62,590,000		
Water Makeup	911,000	1,113,900	1,089,600		
Catalyst	74,000	2,096,000	1,088,000		
Chemicals (including Solvent)	1,542,000	1,723,000	1.688.000		
CLC bed material	0	0	5,752,000		
Subtotal	62,083,000	70,806,900	72,207,600		
TOTAL O&M COSTS	107,536,900	119,440,400	122,898,700		
Specific O&M COSTS (€/kWh)	0.038	0.049	0.046		

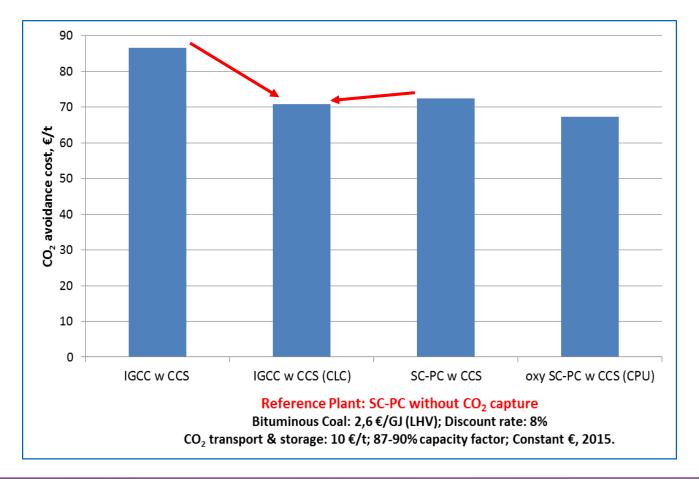
The operating lifetime of the packed bed reactor material leads to higher O&M costs (replacement cost)

Simplified Financial Analysis

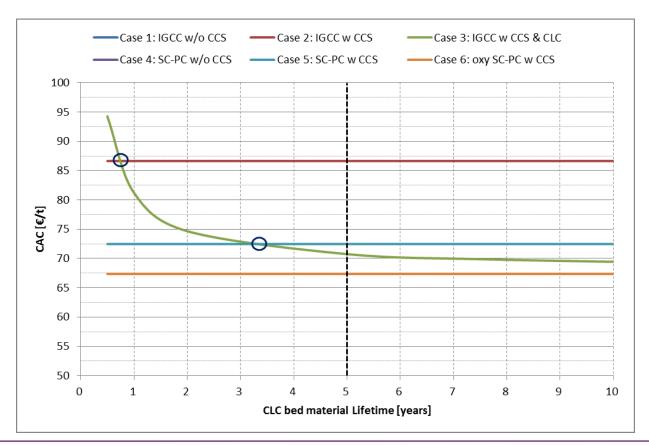

Main macroeconomic assumptions

Item	Cost		
Coal	2.6 €/GJ _{LHV} 65.05 €/t		
Limestone	40 €/t		
Raw water	0.2 €/m ³		
Sulphur selling price	80 €/t		
Ash, slag and gypsum net disposal cost	0 €/t		
CO ₂ transport and storage	10 €/t stored CO2		
CO ₂ emission cost	0 €/t emitted CO2		
CLC bed material	2,500 €/t		

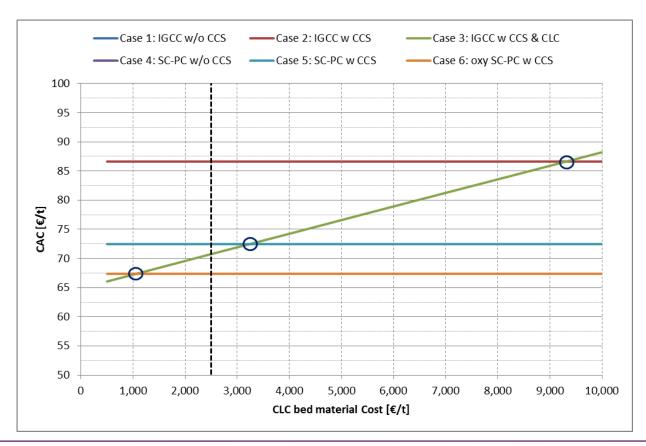
Levelized Cost of Electricity (LCOE)


- LCOE of the CLC plant is slightly lower than the one of the benchmark IGCC
- SC-PC based power plants show lower LCOE

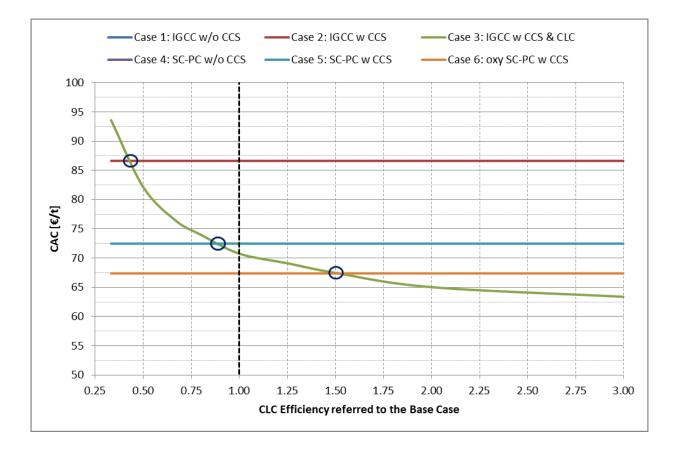
CO₂ Avoidance Cost (CAC)


Based on CAC, CLC plant is more attractive than benchmark IGCC and SC-PC plants with CCS, due to its higher intrinsic CO₂ capture rate

Sensitivity analyses CLC bed lifetime


- Affects maintenance and operating costs (replacement) of the CLC unit
- CLC plant is more attractive than IGCC and SC-PC plants with CCS when the bed lifetime is respectively greater than 9 months and 3.25 years

Sensitivity analyses CLC bed material cost


- Affects both investment and maintenance/replacement costs of the CLC unit
- ► CLC plant is more attractive than IGCC and SC-PC plants with CCS when the bed material cost is respectively lower than 9,000 €/t and 3,200 €/t

Sensitivity analyses CLC reactor performance

Affects required bed surface/volume or reactor vessel number. In turn, both investment and maintenance/replacement costs of the CLC unit are affected

Agenda

- 1. Introduction
 - a. Amec Foster Wheeler at a glance
 - b. What is CCS technology?
 - c. Technical and Policy challenges
- 2. Results of the Techno-economic assessments
 - a. Plant summary
 - b. Methodological approach
 - c. Total Plant Cost
 - d. **O&M**
 - e. LCOE, CAC
 - f. Sensitivity cases

3. Summary Considerations

Summary Considerations

- Carbon dioxide Avoidance Cost of the CLC plant is lower than the cost of the gasification and similar to those of the boiler plants with carbon capture
 - Higher net electric efficiency of the CLC technology (40.8%)
 - Higher carbon capture rate (96.1%)
- CLC unit (bed material, reactor pressure vessels, heat recovery section) requires additional capital requirement
- Some technological barriers need to be overcome before commercialization of the packed bed CLC process in a full-scale power plant
- CLC technology is an ATTRACTIVE OPTION for carbon dioxide capture in power plants, especially if further improvements of the bed material performance / lifetime / cost will be achieved in the future

Look forward for **NEW COMPANIES** to demonstrate the scalability of the process and its **FULL PROFITABILITY** at large scale

amecfw.com

